Response to “Comment on ‘Unraveling the conduction mechanism of Al-doped ZnO films by valence band soft X-ray photoemission’” [Appl. Phys. Lett. 86, 216101 (2005)]

Mercedes Gabás
Departamento de Física Aplicada I, Universidad de Málaga, 29071 Málaga, Spain

Susana Gota
CEA-DSM/DRECAM-SPCSI, CEA-Saclay, 91191 Gif-sur-Yvette, France

José Ramón Ramos-Barrado and Miguel Sánchez
Departamento de Física Aplicada I, Universidad de Málaga, 29071 Málaga, Spain

Nicholas T. Barrett
CEA-DSM/DRECAM-SPCSI, CEA-Saclay, 91191 Gif-sur-Yvette, France

José Avila and Maurizio Sacchi
LURE, Centre Universitaire Paris Sud, Bôîte Postale 34, 91898 Orsay Cedex, France

(Received 23 February 2005; accepted 25 April 2005; published online 16 May 2005)

[DOI: 10.1063/1.1935760]

In the Comment by Lin, it is said that, as shown in Fig. 6 of Ref. 2 (Ref. 10 in the original Letter), the optical band gap of the 3% Al-doped ZnO film is bigger than that of the 1% Al-doped film. From this figure, it is easily seen that the absorption edge shift toward higher values as the aluminium concentration increases but is not possible to deduce an increase or a reduction of the optical band gap. That should be done with the function

$$\alpha \sim (h\nu - E_m)^{1/2}$$

where α is the absorption coefficient, $h\nu$ is the incident energy and E_m is the measured optical band gap. The shift in the absorption edge is mainly attributed to the Moss-Burstein effect. There is a second phenomenon that affects the measured optical absorption edge in heavily doped n-type semiconductors, which is the change in the nature and strength of the interaction potentials between donors and the host crystal. Thus, the effective measured band gap of a doped semiconductor suffers shrinkage and this is our interpretation of the changes in the valence band. Of course, Mondragón-Suárez et al. do not measure a decrease in the optical gap, but a shift in the absorption edge. In their work, the detected shift in absorption edge with increasing aluminium doping is attributed to the combination of the two competing effects, Moss-Burstein upwards shift and the band gap shrinkage. Note that a few percent Al doping would, following Roth et al., give rise to a smaller measured effective band gap.

In our Letter, we do not study the changes in the band gap width using photoelectron spectroscopy. Band-edge emission in undoped and doped ZnO has been done, and is cited in our Letter. We measure the position of the valence band maximum. Our principal conclusion is that the hybridization between the Al dopant orbitals and ZnO matrix leads to an upwards shift of the chemical potential. The band gap persists in spite of doping and no semiconductor–metal transition has been detected. As a consequence, the band conduction mechanism should be the principal contribution to the conduction process in doped films, as is the case in the undoped ZnO.

This work was funded by the Acción Integrada HF2001-0145 D.G.I. and by MAT2000-1505 MCyT (Spain), and by the Programme d’Actions Intégrées PICASSO No. 04344SH, Ministère des Affaires étrangères et Ministère de la Recherche (France).