STRUCTURE THEOREM FOR PRIME RINGS SATISFYING A GENERALIZED
IDENTITY

A. Fernández López, E. García Rus and E. Sánchez Campos

Departamento de Algebra, Geometría y Topología. Facultad de Ciencias.
Universidad de Málaga. MALAGA 29071 (Spain)

Abstract

We prove in this paper a structure theorem for prime rings whose symmetric
ring of quotients has nonzero socle. Then this result is applied to prime rings
satisfying a generalized identity, and to prime rings having an alternate involution.

Introduction.

A well-known Posner's theorem [20] states that a prime ring satisfying a
polynomial identity is a (two-sided) order in a central simple finite-dimensional
associative algebra. Later, Martindale (see [15, Th. 1.13.4] or [21, Th. 7.6.15])
obtained a more general result for prime rings satisfying a generalized identity.
Actuality, if R a is prime ring satisfying a generalized identity, then its symmetric
ring of quotients $Q_s(R)$ is a primitive ring with nonzero socle such that the
skewfield associated to $Q_s(R)$ is finite-dimensional over its centre, and each
generalized identity of R is a generalized identity of $Q_s(R)$ (see [4, 5]).

Prime rings with involution whose central closure has nonzero socle were
considered by Montgomery, who proved in [18] that if R is a prime ring with
involution satisfying: $xx^* = 0$ implies $x^*x = 0$, then either the involution is
positive ($xx^* \neq 0$ for every $0 \neq x \in R$), or it is normal ($xx^* = x^*x$). This result
would be extended in [6] to semiprime rings.

On the other hand, based on ideas from semigroup theory, Fountain and Gould
[10, 11] introduced a notion of order (we call local order) in a ring which need not
have an identity, and gave [11] a Goldie-like characterization of local orders in
simple rings with minimal one-sided ideals, which are the natural infinite-
dimensional extension of simple artinian rings [13, p. 16]. Later, Anh and Marki
[1,2] extended these results to one-sided orders.

We prove in this paper that if \(R \) is a prime ring whose symmetric ring of
quotients \(Q(\mathfrak{c}) \) has nonzero socle, then the set \(\mathfrak{I}(\mathfrak{c}) \) of all elements in \(R \) having
finite (left and right) uniform dimension is an ideal of \(R \) which is a local order in the
socle of \(Q(\mathfrak{c}) \). Then this result is applied to prime rings satisfying a generalized
identity, obtaining as a consequence Posner's theorem already cited.

Another consequence of our main result is a structure theorem for a prime ring
\(R \) with alternate involution \((aH(R, \ast) a\ast = 0 \text{ for some nonzero } a \in R)\). Since such
a ring satisfies a generalized identity with involution in the sense of [6], its
symmetric ring of quotients has nonzero socle. Hence, if every element of \(R \) has
finite (left and right) uniform dimensions then \(R \) is a local order in a simple ring
with alternate involution containing minimal one-sided ideals. We note that this
result can be used to complete the proof of Theorem 1 of [22] (see[8]).

1. Local orders in associative rings.

Let \(R \) be an associative ring (not necessarily with identity). An element \(a \in R \)
is called square cancellable if
\[
\begin{align*}
a^2x &= 0 \Rightarrow ax = 0 \\
x^2 &= 0 \Rightarrow xa = 0.
\end{align*}
\]
for \(x \in R \cup \{1\} \). Let \(S(R) \) denote the set of all square cancellable elements of \(R \).
An element \(a \in R \) is locally invertible if there exists an idempotent \(e \in R \) such
that \(a \) is invertible (in the classical sense) in \(eRe \). The local inverse \(a# \in eRe \) is
precisely the group inverse of \(a \), and it is characterized by the conditions:
\[
(1.1) \quad aa# = a#, \quad a = aa#, \quad a# = a#aa#.
\]
The idempotent \(e \) is unique, \(e = aa# = a#a \), and will be denoted by \(e = P(a) \).
Moreover, \(a \) is locally invertible if and only if \(a \in a2Ra2 \) [9, Th. 6].

Suppose that \(R \) is a subring of a ring \(Q \). By (1.1), if \(a \in R \) is locally
invertible in \(Q \), then \(a \) is square cancellable in \(R \). Conversely,

Proposition 1. [10, Prop. 2.6]. Let \(R \) be a ring satisfying dcc on principal
right ideals. Then every square cancellable element \(x \) in \(R \) is locally invertible.

Recall that a subring \(R \) of a ring with identity \(Q \) is a classical order in \(Q \) if
\[
\begin{align*}
(1.2) \quad &\text{every nonzero divisor element } x \text{ in } R \text{ (in short } x \in \text{Reg}(R)) \text{ is invertible in } Q, \text{ and} \\
(1.3) \quad &\text{for every } q \in Q, \, q = a^{-1}b = cd^{-1}, \text{ for } b, c \in R, \, a, d \in \text{Reg}(R).
\end{align*}
\]
A subring R of a ring Q (not necessarily unital) will be called a local order in Q if
\begin{align*}
(1.4) & \quad \text{every } x \in S(R) \text{ is locally invertible in } Q, \text{ and} \\
(1.5) & \quad \text{for every } q \in Q \text{ there exists } x \in S(R) \text{ such that } q \in xQx, \text{ and } xRx \text{ is a}
\end{align*}
classical order in the unital ring $xQx = eQe$ ($e = P(x)$).

R is said to be an weak order in Q if
\begin{align*}
(1.6) & \quad \text{given } q \in Q \text{ there exist } b, c, a, d \in S(R) \text{ such that } q = a#b = cd#.
\end{align*}

A weak order R in a ring Q satisfying (1.4) is called an order. Notice that if Q has an identity then every order R in Q is actually a classical order in Q [10, Theorem 3.4].

Proposition 2. If R is a local order in a ring Q then R is an order in Q.

Proof. Let $q \in Q$. By (1.5), $q \in xQx = eQe$ for some $x \in S(R)$, $e = P(x)$, and xRx is a classical order in eQe. Hence $q = a#b = cd#$, with $b, c, e \in R$, and $a, d \in S(R)$.

Let R be a ring, M a left R-module and E a submodule of M. Then E is essential in M if $E \cap N \neq 0$ for all nonzero submodules N of M. A nonzero submodule U of M is uniform if all nonzero submodules of U are essential in U. It is well known that M contains no infinite direct sum of nonzero submodules if and only if M contains an essential submodule which is a direct sum of n uniform submodules for some natural number n. In this case any direct sum of submodules of M has no more than n summands: n is said to be the uniform dimension of M, written $u \text{-dim}M$. Dual definitions hold for right R-modules.

We write
\begin{align*}
I_l(R) &= \{ x \in R : \text{u-dim}(Rx) < \infty \}, \\
I_r(R) &= \{ x \in R : \text{u-dim}(Rx) < \infty \}
\end{align*}
and
\begin{align*}
I(R) &= I_l(R) \cap I_r(R).
\end{align*}
It is known that $I_l(R)$ and $I_r(R)$ are left and right ideals of R respectively. By [2, Prop. 2], for a prime ring R with nonzero socle,
\begin{align*}
I_l(R) = I_r(R) = \text{Soc}(R).
\end{align*}
In fact, if $a \in \text{Soc}(R)$ then aR (similarly Ra) contains an infinite sequence of orthogonal division idempotents.

For a subset S of a ring R we write $\text{lan}(S)$ (respectively, $\text{ran}(S)$) to denote the left (respectively, right) annihilator of S, and $\text{ann}(S) = \text{lan}(S) \cap \text{ran}(S)$. If $S = \{ x \}$ consists of a single element, we simply write $\text{lan}(x)$, $\text{ran}(x)$, $\text{ann}(x)$. Put
\begin{align*}
Z_l(R) &= \{ a \in R : \text{lan}(a) \text{ is essential in } R \}.
\end{align*}
If $\mathbb{Z}_1(R) = 0$ then R is left nonsingular. Right nonsingular rings are defined dually. A ring R is nonsingular if it is both left and right nonsingular. It is known that $\mathbb{Z}_1(R)$ and $\mathbb{Z}_2(R)$ are ideals of R.

Proposition 3. For a prime ring R the following conditions are equivalent:

(i) R is a local order in a simple ring with minimal one-sided ideals,

(ii) R is an order in a simple ring with minimal one-sided ideals,

(iii) R satisfies the following conditions and their duals

(A) acc on left annihilators $\text{lan}(x), \ x \in R$

(B) $I_1(R) = R$,

(iv) R is left nonsingular and $I_1(R) = R = I_1(R)$.

Proof. (i) \Rightarrow (ii) follows from Prop. 2; (ii) \iff (iii) and (iii) \Rightarrow (iv) have been proved in [11, Theorem 1.1], and the implication (iv) \Rightarrow (ii) can be get by using the methods of [12].

(ii) \Rightarrow (i). Suppose that R is an order in a simple ring Q with minimal one-sided ideals. By [1, Prop. 10] and its dual, for every $s \in S(R)$ the prime ring sRs is a classical order in the simple artinian ring $sQs = eQe$ ($e = P(s)$). Thus we need only to prove that every $q \in Q$ is contained in xQx for some $x \in S(R)$. By Litoff's theorem [14, p.19], given $q \in Q$ there exists $u = u^2 \in Q$ such that $q \subseteq uQu$ with $u = u_1 + \ldots + u_n$ a sum of orthogonal division idempotents. This reduces the problem to the case of a division idempotent q. Now $q = a#b = cd#$ where b, c can be taken (see [10, Lemma 2.1]) such that $aa#b = b$ and $cd#d = c$. By minimality of the left ideal Qq, $Qq = Qb$ and similarly $qQ = Qc$. Since R is prime, there is $x \in R$ such that $s = cxb \neq 0$. Hence $s \in cQ = qQ \Rightarrow sQ = qQ$ and $Qs = Qb = Qq$. Then $q \in qQ = sQs$ with $s \in S(R)$.

Given a semiprime ring R, consider the set of all left R-module homomorphisms $f : RI \rightarrow R$ where I ranges over all essential ideals of R. Two such functions are said to be equivalent if they agree on their common domains. Let $[f, I]$ denote the equivalence class of f and let $Q_1 = Q_1(R)$ be the set of all such equivalence classes. This set with the usual operations is a ring with identity called the left Martindale ring of quotients of R. The mapping $a \rightarrow R_a$ ($R_a x = xa$) is an embedding of R into Q_1, and for every $q \in Q_1$ there exists an essential ideal I of R such that $Iq \subseteq R$. Now the symmetric ring of quotients is defined as the subring of Q_1 $Q_2(R) = \{ q \in Q_1(R) : qI + Iq \subseteq R, \text{for some essential ideal } I \text{ of } R \}$. This is the approach followed in [15 and 19], but there is a different approach (see [3, 17]).
An essentially defined double centralizer on \(R \) is a pair \((f, g)\) where \(f \) is a right \(R \)-module homomorphism from an essential ideal \(I \) of \(R \) into \(R \) and \(g \) is a left \(R \)-module homomorphism of \(I \) into \(R \), and they satisfy the balanced condition \(xf(y) = g(x)y \) for all \(x, y \in I \). Two essentially defined double centralizers \((f_1, g_1)\) and \((f_2, g_2)\) are equivalent: \((f_1, g_1) \sim (f_2, g_2)\) if and only if \(f_1, f_2 \) and \(g_1, g_2 \) coincide in their common domains. The set of all equivalence classes with the usual operations is a ring isomorphic to the symmetric ring of quotients \(Q_s(R) \) of \(R \). We have that the mapping \(a \to (L_a, R_a) \) is now an embedding of \(R \) into \(Q_s(R) \). Notice that if \(R \) is simple then \(Q_s(R) \) is precisely the ring of multipliers of \(R \).

Remark: Let \(Q \) be a simple ring with minimal one-side ideals. Notice that the socle of \(Q_s(Q) \) is precisely \(Q \). In fact, if we represent \(Q \) as the simple ring \(F \gamma(X) \) of all finite rank continuous linear operators relative to a dual pair of vector spaces \((X, Y)\) over a division ring \(A \), then \(Q_s(Q) \) is the ring \(L \gamma(X) \) of all continuous linear operators (see [7] or [15, Th. 1.15.4]).

PROPOSITION 4. Let \(R \) be a prime ring which is a local order in a simple ring \(Q \) with minimal one-sided ideals.

(i) For every \(0 \neq q \in Q \) and every nonzero ideal \(I \) of \(R \), \(qIq \cap I \neq 0 \).

(ii) Given \(0 \neq I \) ideal of \(R \). For every \(q \in Q \), there exists \(x \in I \) such that \(q \in xQx \).

(iii) The symmetric ring of quotients \(Q_s(R) \) of \(R \) can be embedded in \(Q_s(Q) \).

(iv) \(I_q(Q_s(R)) \subset I_q(Q_s(Q)) = \text{Soc}(Q_s(Q)) = Q. \)

Proof (i). Write \(q = a^#b = cd^# \). Then \(cd \neq 0 \) and \(ab \neq 0 \). Since \(R \) is prime, there exists \(x \in I \) such that \(cdxb \neq 0 \). Hence \(0 \neq cdxb = cd^#d^2xa^2a^#b = qd^2xa^2q \in qIq \cap I \).

(ii). Let \(I \) be a nonzero ideal of \(R \). Given \(q \in Q \), there exists an idempotent \(e \) in \(Q \) such that \(q \in eQe \) and \(e = e_1 + \ldots + e_n \) sum of orthogonal division idempotents. By (i) we can take \(0 \neq x_1 \in e_1e_1 \cap I \). Then \(q \in eQe = xQx \) with \(x = x_1 + \ldots + x_n \in I \).

(iii). Let \((f, g) \in \text{Hom}(I_R, R_R) \times \text{Hom}(R_I, R_R)\), \(xf(y) = g(x)y \) for all \(x, y \in I \). By (ii), given \(q \in Q \), \(q = xw = vx \) where \(x \in I \) and \(w, v \in Q \). Define \(\tilde{f}(q) = \tilde{f}(xw) = f(x)w \). To see that \(\tilde{f} \in \text{Hom}(Q_s(Q), Q_s(Q)) \) we need just to verify that \(\tilde{f} \) is well defined. Suppose that \(q = x_1w_1 = x_2w_2 \), \(x_1, x_2 \in I \), \(w_1, w_2 \in Q \). Now by the common right denominator property [10, Theor. 4.3], \(w_i = a_i^# \), \(a_i \in R \), \(s \in S(R) \). Then \(x_1a_1^#s = x_2a_2^#s \Rightarrow x_1a_1s = x_2a_2s \Rightarrow f(x_1)a_1s = f(x_2)a_2s \Rightarrow f(x_1)a_1^#s = f(x_2)a_2^#s \).
Define $\tilde{g}(q) = \tilde{g}(v x) := v g(x)$. Similarly, $\tilde{g} \in \text{Hom}(Q, Q)$. Now we must prove the balanced condition. Let $q_i = x_i w_i = v_i x_i \in Q$. Then
\[
q_1 \tilde{f}(q_2) = q_1 \tilde{f}(x_2 w_2) = q_1 f(x_2)w_2 = v_1 x_1 f(x_2)w_2 = v_1 g(x_1)x_2 w_2 = \tilde{g}(v_1 x_1)x_2 w_2 = \tilde{g}(q_1)q_2.
\]
Thus $Q_s(R)$ is contained in $Q_s(Q)$.

(iv). By (iii) $Q_s(R)$ is contained in $Q_s(Q)$. Suppose now that q is an element of $Q_s(R)$ which is not in $\text{soc}(Q_s(Q)) = Q$. Then, $Q_s(Q)$ contains an infinite sequence $\{e_n\}$ of orthogonal division idempotents. Write $e_n = qu_n$ with $u_n = u_n e_n \in Q$. Now, for each positive integer n, $u_n = a_n s_n #$, with $s_n \in S(R)$, $a_n \in R$ and $a_n s_n # s_n = a_n$. Then
\[
0 \neq qa_n = qa_n s_n # s_n = qu_n s_n \in qQ_s(R) \cap e_n Q_s(Q).
\]
Hence $qQ_s(R)$ contains an infinite direct sum of right ideals of $Q_s(R)$ and therefore q does not lie in $I_f(Q_s(R))$.

2. Prime rings whose symmetric ring of quotients has nonzero socle.

In this section we obtain the following structure theorem for prime rings whose symmetric ring of quotients has nonzero socle.

Theorem 5. Let R be a prime ring such that $Q_s(R)$ has nonzero socle. Then

(i) $I(R) = I_f(R) = I(R) = R \cap \text{soc}(Q_s(R))$,

(ii) $I(R)$ is a local order in $\text{soc}(Q_s(R))$,

(iii) R is nonsingular.

Proof. We will give the proof in successive steps.

(2.1) *For every nonzero idempotent $e \in \text{soc}(Q_s(R))$, and every nonzero ideal M of R, $e = z # z = z z #$ for some $z \in M$ which is locally invertible in $\text{soc}(Q_s(R))$.*

Since every idempotent in the socle is a sum of orthogonal division idempotents, we may assume that e is a division idempotent. Since $e \in Q_s(R)$, there exists a nonzero ideal I of R such that $eI + Ie \subseteq R$. Take $0 \neq x = es \in R$, $0 \neq y = te \in R$ for some $s, t \in I$. Let $0 \neq v \in M$. Since R is prime, there exist $a, b \in R$ such that $xavby \neq 0$. Then
\[
0 \neq z = xavby \in M \cap e\text{soc}(Q_s(R))e.
\]
Since e is a division idempotent,
\[z \text{Soc}(Q_s(R))z = e \text{Soc}(Q_s(R))e \]
which implies that z is locally invertible in $\text{Soc}(Q_s(R))$, with $e = P(z)$ as required.

(2.2) Let $q_1, \ldots, q_n \in \text{Soc}(Q_s(R)).$ Then there exists $s \in R$ which is locally invertible in $\text{Soc}(Q_s(R))$ such that $sq_i, q_is \in R$ and $q_i = s^#sq_i = q_is^#$ for $i = 1, \ldots, n.$

By Litoff's theorem there exists an idempotent $e \in \text{Soc}(Q_s(R))$ such that $\{q_1, \ldots, q_n\}$ is contained in $e \text{Soc}(Q_s(R))e$. Let M be a nonzero ideal of R with $q_iM + Mq_i \subseteq R$, for $i = 1, \ldots, n$. By (2.1), $e = P(s)$ for some $s \in M$ which is locally invertible in $\text{Soc}(Q_s(R))$. Hence $q_i = q_is = q_i ss^#$ and similarly $q_i = s^#sq_i$. Since $s = es$, s is in $\text{Soc}(Q_s(R))$.

(2.3) $\text{Soc}(Q_s(R)) \cap R$ is contained in $I(R)$.

Let $q \in \text{Soc}(Q_s(R)) \cap R$ and suppose that $\Sigma \rho_i$ is an infinite sum of right ideals of R contained in qR. For each p_i, take $0 \neq r_i \in \rho_i$ and consider the sum $\Sigma_i \text{Soc}(Q_s(R))$ of right ideals of $Q_s(R)$. Since $I(Q_s(R))$ agrees with $\text{Soc}(Q_s(R))$, this sum is not direct. Then
\[0 \neq r_1 p_1 = \Sigma_{j=2, \ldots, n} r_j p_j \text{ with } p_j \in \text{Soc}(Q_s(R)), \quad j = 1, \ldots, n. \]
By (2.2), there exists s in $S(R)$ such that $p_j s \in R$ and $p_j = p_j ss^#$, $j = 1, \ldots, n$. Hence
\[0 \neq r_1 p_1 s = \Sigma_{j=2, \ldots, n} r_j p_j s \in p_1 \cap \Sigma_{j \neq i_1} \rho_j \]
implies that the sum $\Sigma \rho_i$ is not direct. Thus $q \in I_s(R)$. Similarly it is proved that $q \in I_s(R)$, and hence $\text{Soc}(Q_s(R)) \cap R \subseteq I(R)$.

(2.4) $I_s(R) \subseteq \text{Soc}(Q_s(R))$.

This is a consequence of the following more general result.

(2.5) For a prime ring R, $R \cap I(Q_s(R)) = I(R)$.

Let $a \in R$ be such that $a \not\in I_s(Q_s(R))$. Then $aQ_s(R)$ contains an infinite direct sum $\Theta \rho_n$ of nonzero right ideals of $Q_s(R)$. For each positive n, take $0 \neq aq_n \in \rho_n$ and a nonzero ideal I_n of R such that $q_n I_n \subseteq R$. Then $0 \neq aq_n I_n \subseteq aR \cap \rho_n$.
Hence aR contains an infinite direct sum of nonzero right ideals of R. The reverse inclusion is not difficult.

Now it follows from (2.3) and (2.4) that $I_1(R) = I_1(R) = I(R) = R \cap \text{Soc}(Q_s(R))$. We also have by (2.2) that $I(R)$ is a weak order in $\text{Soc}(Q_s(R))$. Hence by [10, Prop. 2.10] and Proposition 3, $I(R)$ is a local order in $\text{Soc}(Q_s(R))$. We must finally show that R is nonsingular, but this will be a consequence of the following general result.

(2.6) Let R be a semiprime ring and I an essential ideal of R. Then $Z_r(I) = Z_r(R) \cap I$, and hence R is nonsingular if and only if R contains a nonsingular essential ideal.

Return to the proof of the theorem. Since R is prime, $0 \neq I(R)$ is essential, but by (ii) and [11, Theorem 1.1], $I(R)$ is nonsingular. Thus R itself is nonsingular by (2.6).

Remark. P.N. Ahn and L. Márki have considered in [2] a refinement of the definition of order and proved that a ring R is a left order in a primitive ring with nonzero socle if and only if R is prime, left nonsingular and has a uniform left ideal. Now the assertion (ii) of Theorem 5 can be refined by saying that R is an order (in the new sense of [2]) in the primitive subring of $Q(R)$ generated by R and $\text{Soc}(Q_s(R))$.

3. A structure theorem for primes ring satisfying a generalized identity.

In this section we get an extension of Posner theorem for prime rings satisfying a generalized identity as a consequence of the structure theorem for prime rings whose symmetric ring of quotients has nonzero socle.

Recall (see [21, p.282]) that for a prime ring R, the extended centroid C of R is a field equals the centre of the left Martindale ring of quotients $Q_l(R)$. Now let X be a countably infinite set (of "formal variables"). Let us denote as usual by $C<X>$ the free associative algebra over C generated by X, and by $Q_l(R)*C<X>$ the free product of the C-algebras $Q_l(R)$ and $C<X>$ [15, p.81]. The elements of $Q_l(R)*C<X>$ are called generalized identities (with coefficients in $Q_l(R)$), and R is said to satisfy a given generalized polynomial identity p if $\phi(p) = 0$ for all homomorphisms $\phi: Q_l(R)*C<X> \rightarrow Q_l(R)$ of C-algebras such that $f(X) \subset R$ and
\(\phi(q) = q \) for all \(q \) in \(Q_1(R) \). The proof of the assertions of the following theorem can be found in [16, Theorem 2], [4, Theorem 1.10] and [5, Theorem 2].

Theorem 6. Let \(R \) be a prime ring satisfying a nonzero generalized identity. Then (a) \(Q_s(R) \) is a prime ring with nonzero socle, and for every division idempotent \(e \) in \(Q_s(R) \), \(eQ_s(R)e \) is a finite-dimensional division algebra over its centre, and (b) each generalized identity of \(R \) is a generalized identity of \(Q_s(R) \).

As a consequence of Theorem 5 and 6, we get the following extension of Posner's theorem [20] for prime ring satisfying a generalized identity.

Theorem 7. Let \(R \) be a prime ring satisfying a nonzero generalized identity. Then
(i) \(I_1(R) = I_2(R) = I(R) = R \cap \text{Soc}(Q_s(R)) \), with \(\text{Soc}(Q_s(R)) = F(Y) \) the simple ring of all finite rank linear operators on \(X \) which are continuous relative to a dual pair \((X,Y)\) of vector spaces over a division algebra \(\Delta \) which is finite-dimensional over its centre,
(ii) \(I(R) \) is a local order in \(F(Y) \).

Corollary 8. (Posner theorem). Let \(R \) be a prime ring satisfying a polynomial identity over its centroid. Then \(R \) is a classical order in a central simple finite-dimensional associative algebra.

Proof. By Theorem 7, \(I(R) \) is a local order in \(\text{Soc}(Q_s(R)) = F(Y) \) with \((X,Y)\) being a pair of dual vector spaces over a division algebra \(\Delta \) which is finite-dimensional over its centre. Since, by Theorem 6, \(Q_s(R) \) satisfies any generalized identity satisfied by \(R \), we may assume that the primitive ring \(Q_s(R) \) satisfies a homogeneous multilinear identity. Hence, by Kaplansky theorem [16, Theorem 4], \(X \) is finite-dimensional over \(\Delta \), which implies that \(\text{Soc}(Q_s(R)) = Q_s(R) \) is a central simple finite-dimensional associative algebra, say \(M_n(\Delta) \). By Theorem 7, \(I(R) = R \cap \text{Soc}(Q_s(R)) = R \cap Q_s(R) \) implies that \(R = I(R) \) is a local order in \(M_n(\Delta) \); but by [10, Theorem 3.5] and Prop. 3, \(R \) is actually a classical order in \(M_n(\Delta) \).

4. Prime rings with alternate involution.

Let \(R \) be an associative ring (2 torsion free). An involution \(* : R \to R \) will be called diagonal if \(aH(R,*)a^* = 0 \Rightarrow a = 0 \) (\(a \in R \)), where \(H(R,*) = \{ a \in R : a = a^* \} \). Otherwise we say that \(* \) is an alternate involution. Notice that if \(R \) is a prime ring with nonzero socle, then every diagonal (respectively, alternate)
involution $*: R \rightarrow R$ can be represented as the adjoint relative to a nondegenerate hermitian (respectively, alternate) form. See structure theorem for prime rings with involution containing minimal one-sided ideals [13, p. 17].

Let R be a prime ring with an involution $*$, and consider the set X of formal variables as the disjoint union of two equipotent sets Y and Y^*, where $X_i \rightarrow X_i^*$ is a bijection form Y onto Y^*. With this regarding of X, the elements of $Q_1(R)\ast C<X>$ are called generalized identities with involution, and R is said to satisfy a given such identity p if $\phi(p) = 0$ for all homomorphisms of C-algebras $\phi: Q_1(R)\ast C<X> \rightarrow Q_1(R)$ such that $f(X) \subset R$, $\phi(q) = q$ for all q in $Q_1(R)$ and $\phi(X_i^*) = \phi(X_i)^*$ for all X_i in Y.

For the proof of the following theorem, the reader is referred to [6].

Theorem 9. Let R be a prime ring with involution $*$ satisfying a nonzero generalized identity with involution. Then (a) the involution $*$ of R extends to an involution of the symmetric ring of quotients $Q_s(R)$, (b) $Q_s(R)$ is a primitive ring with nonzero socle, and for every division idempotent e in $Q_s(R)$, $eQ_s(R)e$ is a finite-dimensional division algebra over its centre, and (c) each generalized identity with involution of R is a generalized identity with involution of $Q_s(R)$.

We note that every prime ring R with an alternate involution $*: R \rightarrow R$ satisfies the generalized identity with involution $p(X_1,X_1^*) = a(X_1 + X_1^*)a^*$, for some nonzero $a \in R$. Since R is prime, $aRa^* \neq 0$ for every nonzero $a \in R$. Hence $p(X_1,X_1^*)$ is a nonzero generalized identity with involution.

Theorem 10. Let R be a prime ring with an alternate involution $*: R \rightarrow R$. Then $I(R)$ is a local order in a simple ring $F_V(V)$, where V is an alternate self-dual vector space over a field K.

Proof. As we have pointed above, R satisfies the nonzero generalized polynomial identity with involution $p(X_1,X_1^*) = a(X_1 + X_1^*)a^*$ for a nonzero $a \in R$. By Theorem 9, $Q_s(R)$ has nonzero socle and satisfies this same identity. Hence, by Theorem 5, $I(R)$ is a local order in a simple ring $Q = F_V(V)$ with $(V, <,>)$ being an alternate self-dual vector space over a field K.
REFERENCES

Received: December 1992

Revised: January 1994